

Current Sensor

Model Number:

HK3A 50 H20 HK3A 100 H20

For the electronic measurement of current:DC,AC,pulsed...,with galvanic insulation between the primary and the secondary circuit.

Features

- Open loop sensor using the Hall Effect
- Galvanic insulation between primary and secondary
- ♦ Insulating plastic case recognized according to UL 94-V0
- ♦ No insertion loss
- ♦ Output 12±8mA
- ♦ 12V (DC) Power supply
- ♦ Proportional output
- ♦ Standards:

EN 50178: 1997
IEC 61010-1: 2000
UL 508: 2010

Applications

- ♦ Battery monitoring motor
- Battery pack current detection

Safety

This sensor must be used according to IEC 61010-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	<i>V</i> c	V	± 13.2
Primary conductor temperature	T _B	$^{\circ}$ C	100

- X Stresses above these ratings may cause permanent damage.
- * Exposure to absolute maximum ratings for extended periods may degrade reliability.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T _A	$^{\circ}\!\mathbb{C}$	-25		85	
Ambient storge temperature	T _S	$^{\circ}\!\mathbb{C}$	-40		85	
Mass	т	g		280		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test	V_{d}	kV	3	@ 50HZ, AC, RMS, 2mA,1min
Plastic case	-	-	UL94-V0	
Insulation resistance	Ris	ΜΩ	500	
Application example	d _{Cp}	-	6.4	
Application example	d _{Ci}	-	6.4	

Electrical data

HK3A 50 H20

 \aleph With T_A = 25 °C, V_C = ±12V, R_L =100Ω.unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	<i>I</i> _{PN}	Α	-50	-	50	_
Supply voltage	V _C	V	10.8	12	13.2	-
Output load resistance	R_{L}	Ω	-	-	100	@Isn TO GND
Output load capacitance	C_{L}	nF	-	-	1	@Isn TO GND
Current consumption	I _C	mA	-	15+Isn	18+Isn	@25°C, Vc=5V
Accuracy@ I _{PN}	Х	%FS	-1	_	1	@25℃, Vc=5V
Linearity error	\mathcal{E}_{L}	%FS	-1	-	1	@25 ℃
Offset current	lo	mA	11.92	12	12.08	<i>@I</i> p=0, TA=25℃
Secondary nominal rms current	/ _{SN}	mA	4	-	20	@25℃
Magnetic offset current	I _{OM}	mA	-0.08	-	0.08	@lp= lpn=0
Temperature drift of offset current	/ от	mA	-0.3	0.03	0.3	@Ip=0, TA=-25 ~ +85°C
Amplitude current temperature drift	<i>I</i> _T	mA	-1	0.02	1	@lp= lpn, TA=-25 ~ +85°C
Response time@ 90% of I _{PN}	t r	mS	-	2	-	-
Frequency bandwidth(-3dB)	BW	KHZ	-	DC	-	-

Electrical data

HK3A 100 H20

 \aleph With T_A = 25 °C, V_C = ±12V, R_L =100Ω.unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	I _{PN}	Α	-100	-	100	_
Supply voltage	V _C	V	10.8	12	13.2	-
Output load resistance	R_{L}	Ω	-	-	100	@Isn TO GND
Output load capacitance	C_{\sqcap}	nF	-	-	1	@Isn TO GND
Current consumption	<i>I</i> c	mA	-	15+Isn	18+Isn	@25℃, Vc=5V
Accuracy@ I _{PN}	Х	%FS	-1	_	1	@25°C, Vc=5V
Linearity error	\mathcal{E}_{L}	%FS	-1	-	1	@25℃
Offset current	lo	mA	11.92	12	12.08	@lp=0, TA=25℃
Secondary nominal rms current	I sn	mA	4	-	20	@25°C
Magnetic offset current	I _{OM}	mA	-0.08	-	0.08	@lp= lpn=0
Temperature drift of offset current	/ от	mA	-0.3	0.03	0.3	@lp=0, TA=-25 ~ +85℃
Amplitude current temperature drift	/ T	mA	-1	0.02	1	@lp= lpn, TA=-25 ~ +85℃
Response time@ 90% of I _{PN}	t r	mS	-	2	-	-
Frequency bandwidth(-3dB)	BW	KHZ	-	DC	-	-

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance ±1mm

♦ Connection of secondary KF2EDGV-3.81-4P

Remarks

- $\ \, \diamondsuit \, \, \, \, \, V_{\rm OUT}$ and $I_{\rm P}$ are in the same direction, when $I_{\rm P}$ flows in the direction of arrow.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.